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Alzheimer’s Disease Neuroimaging Initiative

Abstract

Retrieving medical images that present similar diseases is an active research area for diagnostics 

and therapy. However, it can be problematic given the visual variations between anatomical 

structures. In this paper, we propose a new feature extraction method for similarity computation in 

medical imaging. Instead of the low-level visual appearance, we design a CCA-PairLDA feature 

representation method to capture the similarity between images with high-level semantics. First, 

we extract the PairLDA topics to represent an image as a mixture of latent semantic topics in an 

image pair context. Second, we generate a CCA-correlation model to represent the semantic 

association between an image pair for similarity computation. While PairLDA adjusts the latent 

topics for all image pairs, CCA-correlation helps to associate an individual image pair. In this way, 

the semantic descriptions of an image pair are closely correlated, and naturally correspond to 

similarity computation between images. We evaluated our method on two public medical imaging 

datasets for image retrieval and showed improved performance.

Index Terms

Medical image retrieval; latent topic; semantic association

I. INTRODUCTION

Over the past decade, there has been intensive research in retrieving medical images of the 

same category, e.g., categories of healthy or abnormal organs, for disease diagnosis and 

treatment [1]. Computer-based image analysis systems enable automated and efficient search 

of similar cases in large-scale databases. In these systems, images are represented based on 

their visual content characteristics [2]–[4]. Similarity between images is then obtained by 

comparing the visual features. The retrieval performance is however often hindered by visual 

variations between images of similar categories and visual similarities between images of 

different categories. In other words, images with similar diagnosis may show different 

patterns of anatomical structures; on the other hand, the irrelevant cases may show visually 

similar structures. Thus, it is important to design a descriptive and discriminative feature 

descriptor so that only images with similar diagnosis will be retrieved.

A. Related Works

Feature extraction is essential for computer-aided diagnosis (CAD) applications, such as 

medical image retrieval and classification [5], segmentation [6], and lesion detection [7]. 

The feature descriptor translates an image into a set of numeric vectors and is used to 

quantitatively characterize the image content. The effectiveness of image feature description 

depends on distinction and invariance, which means that the descriptor needs to capture the 

distinctive characteristics and be robust to the various imaging conditions [8]. For this aim, 

various features have been proposed: the grey-level distribution feature to describe the 

intensity variations [9]; filter-based feature to identify the edges and shapes [10]; geometric 

feature to depict the spatial and gradient information [11], etc.
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The aforementioned low-level visual features can be directly applied or easily adjusted for 

different medical imaging systems. However, images with the same disease may present 

dissimilarities in the usual visual sense [12], [13]. Low-level features are also not descriptive 

enough to capture the semantic concept that the users are interested in. The semantic gap 

between the low-level features and users’ high-level expectations can thus impair the 

retrieval performance [14]–[16]. Incorporating semantic descriptions has recently been 

advocated to deal with the limitations of low-level visual features [17]–[21].

There are studies that make use of the ontological knowledge to infer the semantic concepts 

[17], [18]. These methods however highly rely on the ontology structure and involve many 

human interactions, e.g., manual ontology matching. It is preferable to infer the semantics 

based on the images themselves without external information. The bag-of-visual-words 

(BoVW) approach is a possible solution by using the image local content information only 

[22]. The visual words are generated by clustering local features from the image collection. 

They abstract the similar local content patterns from different images and can reduce the gap 

between the low-level features and high-level image understanding [15]. Currently, k-means 

clustering is the most popular method for dictionary construction and has been effectively 

used for a variety of medical image applications [23], [24]. However it often generates a 

redundant and noisy dictionary by trying to accommodate all local feature patterns [19].

Instead of directly using the visual words, the latent topic model (LTM) represents the 

images as a mixture of latent topics, and provides a higher level of semantic description 

compared to the standard BoVW model [25], [26]. The latent topic is a probability 

distribution of words, and can be inferred from the co-occurrence relationship between 

images and words. While the visual words represent the local visual patterns, the topics are 

regarded as the pattern categories [26]. Accordingly, an image that contains multiple 

instances of these patterns is interpreted in terms of the pattern category rather than the 

individual patterns.

LTM has recently been incorporated into medical image analysis. As one of the most 

representative LTM techniques, probabilistic Latent Semantic Analysis (pLSA) [27] was 

adopted to extract the semantic relationship between morpho-logical abnormalities on the 

brain surfaces [20] and to model the histological slides to construct the similarities between 

the medulloblastoma images [21]. These studies focused on images of the same organ, 

indicating that LTM can recognize images that are visually similar. pLSA was also used to 

describe the images with different modalities and various organs [19], suggesting its ability 

to capture the similarity between images that have large visual appearance variations. 

Despite the popularity of pLSA, the Latent Dirichlet Allocation (LDA) model [28] is 

considered more advanced than pLSA by defining a complete generative process [29]. LDA 

and its variants have been widely investigated for natural language processing problems 

[30], [31]. They were also adopted in the imaging domain, e.g., natural scene image 

classification [25], and showed its advantage in image feature description. We expect that 

LDA-based approaches can provide a more powerful semantic description for similarity 

computation in medical imaging.
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For image retrieval, the similarity computation is conducted in a pairwise context between 

images. An association can be built to model the similarity relationship between two images. 

A limitation of the existing LTM techniques is that they typically extract the topics for each 

image independently. Consequently, the topics are not generated based on image pairs, while 

the pairwise context is important in similarity computation. In addition, similarity between 

images is normally measured by direct distance computation between the topic distributions 

of the two images. This however, does not incorporate the semantic association between the 

specific image pairs, and might not represent the actual diagnosis-related similarity.

B. Our Contributions

In this work, we propose a LTM-based CCA-PairLDA feature extraction method to retrieve 

images of similar disease characteristics. Our CCA-PairLDA method has two main 

components: latent topic extraction and semantic association generation. For the latent topic 

extraction, we designed a PairLDA-topic generation process by inferring the latent topics in 

the contexts of image pairs. For the semantic association generation, we designed a CCA-

correlation extraction process by learning an association coefficient between images of the 

same diagnosis with canonical correlation analysis (CCA) [32]. In our method, the PairLDA 

adjusts the topic distributions for image pairs rather than individual images, and the CCA-

correlation helps to make the distributions correlated closely between images of similar 

semantics. The images are then represented as the PairLDA topic distribution conditioned on 

the CCA-correlation model, which is our CCA-PairLDA feature. Similar images are 

retrieved based on the distances between the CCA-PairLDA feature vectors.

We evaluated our method on two publicly available datasets - the Early Lung Cancer Action 

Program (ELCAP) [33] and Alzheimer’s disease Neuroimaging Initiative (ADNI) [34]. Our 

prior work [35] showed the effectiveness of the semantic association-based analysis and 

reported some preliminary results. In this work, we enhance the PairLDA topic extraction 

based on the local features for better image-word co-occurrence exploration, instead of the 

global features. We also elaborate the CCA-correlation process with further association 

coefficient generation and parameter estimation details. In addition, the formulation of CCA-

PairLDA is enhanced to provide a general image representation, so that the similarity 

computation can be conducted across the training and testing images. We extend the 

evaluation to the ELCAP dataset for lung nodule image retrieval task, in addition to the 

originally used ADNI dataset. The more comprehensive performance evaluations are 

performed on the two datasets.

The structure of this paper is as follows. In Section II, we introduce the details of our CCA-

PairLDA method. In Section III we describe the experimental datasets and experimental 

design. In Section IV we present the experimental results and discussion. We provide a 

conclusion and an outline of future work in Section V.
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II. Methods

A. Outline of CCA-PairLDA

The goal of our CCA-PairLDA method is to find an optimal feature representation of 

medical images in the semantic association space, which can be used to construct the 

similarity relationships between different groups of images. The method flow contains four 

stages that correspond to image representation at four cascading granularity levels: local 

feature level, visual word level, latent topic level and semantic association level, as shown in 

Fig. 1. Accordingly, the similarity between images can be calculated based on the local 

feature sets, word frequency histograms, latent topic distributions and semantic association 

coefficients. Our CCA-PairLDA method focuses on the third and fourth levels, with 1) 

PairLDA topic extraction, which generates latent topics based on the image-word co-

occurrence relationship in image pairs, and 2) CCA-correlation generation, which learns 

association coefficient between the PairLDA topic distributions of images.

Outline of the CCA-PairLDA feature extraction method is shown in Fig. 2. The first two 

stages of our method follow the standard BoVW construction, including local feature 

extraction, visual dictionary generation, and word frequency histogram calculation [22]. 

Then, we divide the entire image set randomly into two subsets as source and target sets. 

Images from the source set are paired with all of those from the target set, as shown in Fig. 

2(a). PairLDA topics are extracted based on all image pairs without involving the label 

information. In the next step, we select a group of training images with category labels to 

learn the association coefficient between the PairLDA topic distributions of each individual 

image pair. The training set contains the same number of source and target images, and one-

to-one pairing of training images of the same category is randomly constructed across the 

source and target sets, as shown in Fig. 2(b). After training, the test images (as well as the 

training images) are represented as the PairLDA topic distribution conditioned on the CCA-

correlation model to measure the similarity between images for retrieval, as shown in Fig. 

2(c).

B. PairLDA Topic Extraction

PairLDA assumes that an image is represented by a set of hidden variables, i.e., the latent 

topics, to describe the image semantics. It is a generative model that generates the 

observable visual words from a convex combination of the latent topics as introduced in 

LDA. However, unlike LDA that assigns a different subset of topics to each individual image 

[29], our method constructs a shared topic distribution for a pair of images from the source 

and target sets respectively to represent the relationship between the two images. As a result, 

the extracted topics can fit for image pairs instead of single images. This pairwise 

relationship naturally corresponds to similarity measure between images.

Assume we have an image set EI = {Il|l ∈ 1…N}, which is divided into the source image set 

SI = {Is|s ∈ 1…NSI} and target image set TI = {It|t ∈ 1…NTI} with SI∪TI = EI and SI∩TI = 

∅. A total of D image pairs (Is, It) are formed from the NSI sources and NTI targets with D = 

NSI × NTI. Denote the dictionary as DY = {wν|ν ∈ 1…W} where w is the word and W is 

the dictionary size. In our PairLDA method, each image is represented as a random mixture 
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over K latent topics: for the source set, we have a source topic collection 

, and for the target set, we have . Fig. 3 

shows the dependencies among all variables and depicts the choices of the word  and 

word  from their topics  and  for the image pair. We use  to denote the word in 

source image Is with index i corresponding to the word wν in DY, and  to denote the word 

in target image It with index j corresponding to the word wν′ in DY. The generative process 

contains the following steps:

1. For each image Il, choose a topic distribution θl of size K from a symmetric 

Dirichlet prior with concentration parameter α, i.e., θl ~ Dir(α), where θl 

represents the probability of topic occurrences in this image;

2. For each topic  of the source set, choose a word distribution  of size W 
from a symmetric Dirichlet prior with concentration parameter βSI, i.e., 

, where  represents the probability of word occurrences given 

the topic  in any source image Is. Similarly, choose a word distribution 

with the parameter βTI, i.e., ;

3. For each image pair (Is, It),

a. Choose a topic  from a Multinomial prior with the topic 

distribution θs for image Is, i.e., . Similarly, choose a topic 

 from θt, i.e., ;

b. Choose a word  from a Multinomial prior with the word 

distribution ϕSI conditioned on the topic  for image Is, i.e., 

. Similarly, choose a word  from ϕTI, i.e., 

;

The original LDA does not consider the image pairing information and generates one 

collection of topics. In our PairLDA, however, the words are generated from two separate 

topic collections and thus the images from the source and target sets become independent at 

the word level. On the other hand, the topic distribution θ is chosen from the Dirichlet 

distribution of α for both of the images. This adjusts the topic distributions of the image pair 

collectively and hence makes the image pair correlated at the topic level.

We extended the Gibbs sampling algorithm to learn the parameters in PairLDA, i.e., θ, ϕSI 

and ϕTI. The conditional posterior for choosing the topics of an image pair for the words wν 
and wν′, i.e., the update equation used in Gibbs sampling, is:
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(1)

where  indicates the number of 

occurrences that a word wν (excluding the word  in image Is) has been observed with 

topic , and  indicates the number of occurrences that a topic  has been observed 

with a word (excluding the word ) of image Is. The notations w⃗t, wν′, z⃗t,  and 

 are defined similarly for image It. Subsequently, the parameters introduced in Pair-LDA 

can be estimated with the following equations:

(2)

(3)

Eq. (2) gives the independent topic collection for the source set, and Eq. (3) is the topic 

distribution of the source image. The parameters for the target set are estimated similarly. 

During the experiments, we evaluated the parameters (α from 0.1/K to 100/K and β from 

10−4 to 10−1) and found that these parameters had insignificant influence which is similar to 

the findings by Lu and Ramage et al. [36], [37]. The more widely used settings of α = 50/K, 

βSI = 0.01 and βTI = 0.01 were thus fixed for all experiments. The overall time complexity 

of PairLDA is O(NitKNSINTI). Nit is the number of iterations of Gibbs sampling and was set 

at 30 throughout the experiments, which was sufficient to generate stable sampling results. 

Considering that including a few new images would have insignificant influence on the 

whole topic distributions, we can sample the topics for an individual new image without 

changing the existing topic collections. On the other hand, if a large number of new images 

are introduced, we suggest a new PairLDA topic extraction is necessary since the topic 

collections could largely change. The pseudo code of PairLDA extraction is displayed in 

Algorithm 1.
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C. CCA Correlation Generation

PairLDA topics can be directly used to measure the similarity between images by calculating 

their topic distribution distance in latent topic space (Fig. 1(c)). However, PairLDA 

generates the topics in the context of all image pairs, adjusting the topics to fit for each 

image pair. This would reduce the difference between the topic distributions of two images 

and hence their discriminative ability in the topic space. To overcome this issue, we propose 

to extract latent semantic description of an image differently when coupled with others, i.e., 

making the topic distribution interpreted differently in different pair contexts (Fig. 1(d)).

At this stage, we would like to capture the semantic association of an image pair based on 

the extracted Pair-LDA topics. Rather than directly using the topic distributions that are 

obtained in the context of all image pairs, an association coefficient is defined to connect the 

images of the same category in an individual image pair context. In other words, while 

PairLDA adapts the latent topics for all image pairs, the semantic association works on an 

individual image pair from the same category. In this way, the topic distribution for one 

image can be flexibly assigned if it is paired with different images, enhancing the correlation 

between the two images. We adopt the CCA model for this purpose.

Algorithm 1

PairLDA Extraction

Input: word vector matrices wSI and wTI, hyperpa-
  rameters α, βSI and βTI, topic number K, iteration
  number Nit

Output: word-topic and topic-image distributions θ and
  ϕ.

1:
Set all occurrence variables .

2: // Initialization of word-topic and topic-image dis-
tributions

3: for all source images Is ∈ SI do

4:   for all words wυ in Is do

5:

    Randomly sample topic ;

6:

    Increase word-topic occurrence  by 1;

7:

    Increase topic-image occurrence  by 1;

8: Similarly, initialize the occurrences for the target set;

9: // Gibbs sampling

10: for it ∈ [1, Nit] do

11:   for all image pairs (Is, It) ∈ {Is ∈ SI, It ∈ TI}
  do

12:     for k ∈ [1, K] do

13:

      Decrease  and  by 1;
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14:

      Sample  for
      source;

15:

      Increase  and  by 1;

16:

      Similarly, sample  and update occur-
      rences for target;

17: Parameter estimation according to Eqs. (2) – (3);

18: return θ and ϕ;

Given two sets of random variables, CCA finds a pair of linear transformations, making the 

transformed variables of these two sets correlated to the largest extent. Fig. 4 gives the 

probabilistic interpretation of CCA, which depicts the generation process of the latent topic 

distribution from the association coefficient, which is a latent variable following a normal 

distribution [32]. The method involves the parameter set PS = {YSI, YTI, mSI, mTI, ΨSI, 

ΨTI}, where Y is a K × d transformation matrix that relates to the two sets of variables (θ 
and c) with the length of canonical correlations d, m is a vector of size K that makes the 

transformed variables to non-zero mean and Ψ is an error covariance matrix of size K × K. 

The generative process is described as follows:

1. For each pair of image (Is, It), choose an association coefficient cst of size d from 

a Normal distribution with parameters 0 and Id, i.e., cst ~ N(0, Id), where 0 is the 

mean vector of size d and Id is the unit variance of size d with 1 ≤ d ≤ K denoting 

the length of the coefficient.

2. For the topic distributions of the two images, choose θs from a Normal 

distribution based on the association coefficient cst, i.e., θs ~ N(YSIcst + mSI, 

ΨSI). Similarly, choose θt from cst, i.e., θt ~ N(YTIcst + mTI, ΨTI).

While θs and θt represent the images in terms of PairLDA topics, the association coefficient 

cst indicates how these two images are correlated at the semantic association level. The 

coefficient is adapted between different topic distributions, making the semantic descriptions 

of images interpreted differently for different image pairs. During the training process, each 

training source image is paired with one training target image of the same category. With 

this one-to-one mapping manner, we associate the individual image pairs, instead of all 

image pairs as in the PairLDA topic extraction. Given the CCA transformation, the 

transformed topic distributions of the two mapped images are correlated to the largest extent. 

Thus, while PairLDA generates the latent topics for all image pairs simultaneously, CCA-

correlation helps to associate the individual image pairs.

The parameter set PS = {YSI, YTI, mSI, mTI, ΨSI, ΨTI} can be estimated using maximum 

likelihood estimation [32], as:
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(4)

where  is the sample covariance matrix of θ, USI,d and UTI,d are the 

matrices containing the first d canonical directions, MSI and MTI are arbitrary matrices such 

that  that is the diagonal matrix with the first d canonical correlations and m̃SI 

and m̃TI are the sample means. During the experiments, d was set as the minimum of the 

ranks of topic distribution matrices of the training source and target sets, and 

 where R is a rotation matrix of size d1. In this way, we have the 

collection of Y of size K × d, m of size K × 1 and Ψ of size K × K, for the source and target 

sets. The posterior expectations and variances of the association coefficient cst given θs and 

θt are:

(5)

1In the experiments, R was computed arbitrarily based on the nested dimensions method as introduced in https://en.wikipedia.org/
wiki/Rotation_matrix.
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The pseudo code of CCA correlation generation is displayed in Algorithm 2.

Algorithm 2

CCA Correlation Generation

Input: training topic distribution matrices  and

  .

Output: model parameter set PS

  1:

Compute covariance matrices ;

  2: Compute canonical directions (USI, UTI) = svd(Σ̃);

  3:

Set ;

  4:

Compute correlation matrix ;

  5:

Set ;

  6: Compute sample means m̃SI and m̃TI;

  7: Parameter estimation according to Eq. (4);

  8: return PS = {ȲSI, ȲTI, m̅SI, m̅TI, Ψ̅SI, Ψ̅TI};

D. CCA-PairLDA Feature Representation

In this study, we compute the similarity between two images in the semantic association 

space. An image Il is represented as the PairLDA topic distribution θl with the association 

coefficient c learnt using the CCA-correlation model with PS = {ȲSI, ȲTI, m̅SI, m̅TI, Ψ̅
SI, 

Ψ̅
TI} in Eq. (4). Therefore, we have our CCA-PairLDA feature representation as:

(6)

The similarity between a test image Itest and a training image Itrain is thus formulated as:

(7)

The CCA-PairLDA feature of the images Itest and Itrain can be estimated according to Eq. 

(4), as

(8)
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(9)

where the correlation coefficient c follows a normal distribution according to Eq. (5), as:

(10)

The pseudo code of CCA-PairLDA similarity computation is displayed in Algorithm 3.

III. Datasets and Experimental Design

We employed two publicly available medical imaging datasets – the ELCAP [33] and ADNI 

[34] – to evaluate our CCA-PairLDA feature representation for retrieving images of similar 

disease and symptom.

Algorithm 3

CCA-PairLDA Similarity Computation

Input: training and test topic distribution matrices
  θtrain and θtest, CCA Correlation model PS

Output: similarity matrix Sim

1: for all test images Itest do

2:   Obtain type of Itest as source or target;

3:   Compute c based on the type using Eq. (10);

4:   Estimate feature of Itest using Eq. (8);

5:   for all training images Itrain do

6:     Obtain type of Itrain as source or target;

7:     Compute c based on the type using Eq. (10);

8:     Estimate feature of Itrain using Eq. (9);

9:     Compute similarity Sim(Itest, Itrain) using
    Eq. (7);

10: return Sim;

A. Datasets and Implementation

For the ELCAP dataset, our aim is to retrieve the images of lung nodules of the same 

category. Lung nodules are small masses in the lung. Intra-parenchymal nodules are more 

likely to be malignant than those connected with the surrounding structures. Hence, the lung 

nodules are normally divided into four different categories according to their location and 

connection with surrounding structures, as: well-circumscribed (W), vascularized (V), juxta-

pleural (J) and pleural-tail (P), as shown in Fig. 5. The ELCAP database contains 50 sets of 

low-dose computed tomography (LDCT) human lung scans with 379 unduplicated lung 
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nodules annotated at the centroid, where 57 are type W, 60 are type V, 114 are type J and 

148 are type P.

In the ELCAP database the lung nodules are small and have an average size of 4 × 4 pixels 

across the centroid in the axial direction. Therefore, for nodule analysis, a sub-window of 33 

× 33 pixels was cropped from each image slice with the annotated nodule centroid at the 

center. With each pixel around the annotated centroid (including the centroid pixel) as a 

keypoint, we computed a scale invariant feature transform (SIFT) [38] descriptor using the 

VLfeat2 library [39], with the parameter frames = [px; py; sc = 4; or = 0], where px and py 
indicate the pixel position, sc is the scale and or is the orientation. A 128-dimension vector 

was obtained for each frame and used as a local feature. Based on our previous work [40], 

[41], incorporating too many or too few surrounding structures would reduce the 

performance of recognizing the nodule type. Therefore, a total of 100 local features were 

used by selecting the pixels near the nodule centroid.

For the ADNI dataset, our goal is to retrieve the brain images that show the same 

progression stage to dementia. Alzheimer’s disease (AD) is the most common 

neurodegenerative disorder and its symptoms of cognitive impairment develop gradually 

over years. Mild cognitive impairment (MCI) represents the transitional state between AD 

and cognitively normal with a high conversion rate to AD. The risk of progression to 

dementia is higher if more regions display glucose hypometabolism [42], as displayed in 

Fig. 6. The ADNI database comprises 331 subjects with magnetic resonance (MR) and 

positron emission tomography (PET) scans, which provide important structural and 

functional information of the brain [43], [44]. The diagnoses of these subjects include three 

stages, where 77 are cognitively normal (CN), 169 are MCI and 85 are AD.

In the ADNI database, we pre-processed the MR and PET data following the ADNI image 

correction protocols and non-linearly registered to segment the entire brain into 83 

functional regions [42]. We firstly used FSL FLIRT [45] to align the PET images to the 

corresponding MR images. The selected MR data in ADNI database have been labeled with 

83 brain regions of interest (ROI) using the multi-atlas propagation with enhanced 

registration (MAPER) approach [46]–[48]. The MAPER-generated labelmaps were then 

applied to segment the brain PET data. A complete list of the 83 ROIs can be found in 

previous papers [46], [49]. After the segmentation, for each ROI, we extracted eight features. 

The mean [50] and Fisher [51] indices, and difference-of-Gaussian-based features (DoG 

area, DoG contrast, DoG mean) features [52], [53] were extracted from the PET data, and 

solidity, convexity [54] and gray matter volume [46] were extracted from the MR data. The 

gray matter volume features were calculated as the summation of the gray matter voxels 

captured by voxel-based morphometry (VBM) [55]. Thus, we obtained an 8-dimension 

vector for each ROI as one local feature, and 83 local feature vectors for each subject.

For each dataset, with the local features extracted from all images, we applied the k-means 

method to generate the dictionary with the Euclidean distance. Then visual word frequency 

2From VLfeat project, downloaded at: http://www.vlfeat.org/index.html
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histograms were generated to represent the images as BoVW models. The co-occurrence 

relationship between the images and words was obtained for PairLDA topic extraction.

B. Experimental Design and Evaluation Metrics

While PairLDA topics were extracted in an unsupervised manner within the entire image 

collection, CCA-correlation was learnt during the supervised training stage. We conducted 

5-fold cross-validation. The parameters of dictionary size W and topic number K were 

optimized on the training set by maximizing the mean accuracy. The mean and standard 

deviation of the accuracies across the five folds were reported for experimental comparisons. 

The training set was divided into targets and sources evenly to build the one-to-one mapping 

for CCA-correlation generation. The testing images were used as queries to conduct the 

retrieval of top tk related results following Eq. (7).

The retrieval performance was quantitatively measured using the average accuracy of Ntest 

queries with the top tk retrieval results, as,

(11)

where TP is the number of true positive items within the tk retrieved results for the query 

image Iq with the index of q. To assess the performance of different categories, we also 

analyzed the recall and precision:

(12)

(13)

where FN and FP are the numbers of false negative and false positive items within the tk 
retrieved results for the query image Iq.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Visual Words v.s. Topics

Our PairLDA extracts the latent topics from the co-occurrence relationship between the 

images and visual words. An appropriate size of dictionary (W) is important for constructing 

the co-occurrence relationship. In addition, similarity between images is measured in the 

semantic association space of the PairLDA topics. The proper number of latent topics (K) is 

essential to capture the similarity relationship. Fig. 7 shows the effects of these two 

parameters on the two datasets. Here, for the different Ws (from 10 to 2000, with interval 10 

from 10 to 100 and interval 100 from 100 to 2000) and Ks from 5 to 200 (with interval 5), 

we displayed the average accuracy of top tk retrievals given tk = 1, 5, 10 and 20, as the 
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colour value of the table. The results represented in the following sections were obtained 

with the same ranges of the two parameters as aforementioned.

For the ELCAP dataset, the accuracy reduced when the dictionary size was large. For the 

ADNI dataset, the highest accuracies were obtained given a medium range of dictionary size 

(W was from 100 to 1000). The different accuracy variations on these two datasets were 

attributed to the characteristics of the imaging data. As we introduced previously, the 

dictionary generated by k-means is often redundant and noisy when its size is large. For lung 

nodule images, the nodules are small and nodules of different categories exhibit similar 

visual patterns. A larger dictionary would identify more unnecessary visual details and thus 

influenced more mismatching between images of the same category. To the contrary, the 

visual details uncovered by a larger dictionary could indeed be useful in obtaining a more 

descriptiveness representation of the brain images that present the very complicated 

anatomical structures.

The results from the ELCAP dataset present a relatively clear accuracy pattern varying the 

dictionary sizes and topic numbers when compared to the ADNI dataset. This is because the 

visual features of brain images can have large intra-class variation and small inter-class 

difference. For example, given a late stage MCI query subject that has presented higher 

transition risk to AD, there could be some late stage MCI subjects or early stage AD 

subjects, all of which are very similar to the query. Given the stochastic nature of the 

algorithm and different parameter settings, the topmost ranked results could be obtained 

from either of the two categories across different validation runs. Thus, the accuracy matrix 

presents a noisy appearance when the output number was small (e.g., tk = 1 or 5). Increasing 

the output numbers could result in a more stable set of the most similar cases, though the 

ranking orders of them may be different across the different runs. We hence can observe 

better retrieval performance from a smaller topic set and a larger dictionary. We did not 

observe improved performance for lower values of K(K < 5) and W(W < 10). For the 

extreme values, e.g., W = 1 or K = 1, the method will fail since the same feature vectors will 

be obtained for each case.

B. LTM-based Representation

Our CCA-PairLDA is a LTM-based approach that extracts the Pair-LDA topics and then 

applies CCA to learn the correlations between these topics. We conducted comparisons 

among six LTM-based methods on the two datasets. The first three methods, i.e., pLSA, 

LDA and PairLDA, were used to show the effects of different latent topic extraction 

methods. The other three, i.e., CCA-pLSA, CCA-LDA and CCA-PairLDA, were employed 

to show the performance of CCA-correlation learnt upon these topics. Fig. 8 shows the 

statistics of 1-NN retrieval results, with varying settings of dictionary sizes (from 10 to 

2000) and topic numbers (from 5 to 200).

Among the first three approaches that calculated the similarity in the latent topic space, 

pLSA generated the worst retrieval performance. One aspect was that pLSA had lower 

overall retrieval accuracy in terms of median, minimum and upper extreme values. In 

addition, although the maximum accuracy of pLSA was close to LDA and better than Pair-

LDA, it resulted in many outliers, which suggested its unstable performance. LDA obtained 
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higher retrieval accuracy and better stability than pLSA, indicating its advantages over pLSA 

with a complete generative process. Our PairLDA delivered the most stable performance 

among these three approaches, with a small standard deviation and the upper and lower 

extremes close to the maximum and minimum, but the retrieval accuracy was unfavorable 

when compared to LDA. The lower accuracy was due to the lowered discriminative ability 

of PairLDA in the latent topic space. The LDA method learnt the latent topic considering a 

single image, which can emphasize the most discriminative topics in the latent topic space. 

The PairLDA approach extracted the latent topics in the context of image pairs and adjusted 

the topics for all pairs, thus reduced the difference between individual image pairs. On the 

other hand, adjusting the topics for all image pairs could reduce the influence of the trivial 

topics, hence PairLDA was more stable when compared to LDA.

Better retrieval performances were achieved by the latter three methods that constructed the 

similarity relationship based on the CCA-correlation. While accuracy improvements from 

pLSA and LDA topics were relatively small, variations of retrieval accuracies across 

different dictionaries and topics became smaller. For example, there were fewer outliers with 

CCA-pLSA compared to pLSA, and the upper and lower extremes of CCA-LDA were 

similar to its maximum and mini-mum values. These were due to the fact that CCA-

correlation is able to make the topics correlated closely with variable trans-formation. 

However, pLSA and LDA topics were generated independently and thus did not lead to 

considerable accuracy improvement. PairLDA topics, however, were generated by pairing 

the images, which is more suitable for CCA-correlation generation that works on the 

correlated variables. Therefore, although PairLDA individually obtained lower accuracy 

when compared to the LDA approach, the combination of CCA-correlation and PairLDA 

(CCA-PairLDA) obtained the best retrieval results across all of these LTM-based 

approaches.

C. Retrieval Accuracy, Recall and Precision

Fig. 9 shows the retrieval accuracies using our CCA-PairLDA and the BoVW approach, with 

varying numbers of outputs on the two datasets. Here, the mean ± standard deviation of the 

accuracies across the 5-folds cross-validation were reported. It can be observed that higher 

retrieval accuracies were achieved with CCA-PairLDA. Furthermore, while BoVW had 

lower accuracies when the number of outputs was small, CCA-PairLDA obtained relatively 

consistent accuracies across the different numbers of retrieval outputs.

Tables I and II give the recall and precision comparisons between the BoVW and CCA-

PairLDA approaches on the two datasets with different numbers of outputs as tk = 1, 9, 19 

and 29 across the different categories. For a given output number, the mean ± standard 

deviation of the recalls and precisions were displayed. Overall, our method outperformed the 

control method with higher recalls and precisions across different groups. Furthermore, our 

method obtained more balanced recalls and precisions on different groups. For example of 

the ELCAP dataset, type W obtained lower recalls and precisions with the BoVW method 

due to the fact that the type W nodules are very similar to types V and P and are usually 

retrieved incorrectly. Our CCA-PairLDA generated more balanced recalls and precisions 

across the three types by correctly retrieving type W nodules, specifically when the output 
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numbers were relatively large. For the ADNI dataset, MCI is usually considered as the 

transitional state from CN to AD. Both CN and AD subjects were inclined to be incorrectly 

retrieved as MCI, resulting in very low recalls of CN and AD in particular for the large 

output numbers. Our methods can better relieve this problem when compared to the BoVW 

method with higher recalls of these two stages and higher precisions overall. We also tested 

our method on binary brain image classification task (AD v.s. normal control) with the 1-NN 

method, and obtained an accuracy of 0.773 ± 0.053. It is close to the result from Simpson et 

al [57]; however, we expect improved performance if we have more advanced features 

specific to the brain anatomical information as used by them, which will be explored in our 

future work.

In Figs. 10 and 11, we displayed the visual retrieval results from the BoVW and CCA-

PairLDA approaches. Given these queries, both of the two methods can correctly retrieve the 

cases with the same class of the query as the most related results. However, the CCA-

PairLDA tended to have better performance as more results were included. This was due to 

the reason that CCA-PairLDA represented the images with latent association instead of 

merely with visual appearance. In this way, we can find the cases that may be visually 

different but within the same category. For instance of the brain images, given the MCI 

query, although BoVW obtained a more visually similar case for the second result, our 

method correctly found one from the same category of MCI.

D. Retrieval Method

Our CCA-PairLDA is a feature extraction method that presents the image in a semantic 

association space and can be used with different retrieval methods. We compared with 

several retrieval methods to show the effectiveness of our CCA-PairLDA feature on medical 

image similarity computation. We conducted the comparison between the BoVW and our 

CCA-PairLDA features, with the various retrieval methods: k-NN, large margin nearest 

neighbor (LMNN) [58] and iterative ranking (ITRA) [59]. Specifically, the k-NN retrieval is 

the classical retrieval method. The LMNN retrieval is a supervised method using distance 

metric learning to identify the most related neighbors before conducting the k-NN retrieval. 

The ITRA retrieval refines the retrieval results from k-NN by calculating the ranking scores 

of the retrieved items and remaining candidates. Fig. 12 displays the mean ± standard 

deviation of accuracies for each method given different outputs with as tk = 1, 9, 19 and 29. 

The BoVW based methods involved the parameter W, and the CCA-PairLDA method 

contained the parameters W and K. For the LMNN method4, we applied the default settings 

for distance metric learning (with maximum number of iterations as 1000, suppress output 

as 0, output dimensionality as 3, tradeoff between loss and regularizer as 0.5). For the ITRA 

method, we fixed the numbers of initial results and neighbours for bipartite graph 

construction at 10 and the iteration number at 20.

It can be observed that higher retrieval accuracies were obtained with our CCA-PairLDA 

feature when compared to the BoVW feature with the different retrieval approaches. 

Although the BoVW approach can be used to bridge the gap between the low-level visual 

4The LMNN package was downloaded from http://www.cse.wustl.edu/~kilian/code/lmnn/lmnn.html
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appearance and high-level semantic understanding by grouping the similar local features, 

our CCA-PairLDA can provide more powerful semantic descriptions by further inferring the 

latent topics using the co-occurrence relationship between the images and words. 

Furthermore, improvements of retrieval performance using different retrieval methods were 

different. LMNN and ITRA achieved larger improvements compared to k-NN based on the 

BoVW feature, especially when the number of outputs was small, e.g., tk = 1 and 9. The 

improvements were due to that LMNN incorporated a learning process and ITRA involved 

the retrieval result refinement. However, for our CCA-PairLDA feature, relatively smaller 

improvements can be observed with LMNN and ITRA over k-NN. This was because CCA-

PairLDA involved the CCA-correlation generation in a supervised way, leading to a smaller 

improvement when further learning process was introduced by LMNN. ITRA used the 

relationship information between the image pairs of the initial retrievals and remaining 

candidates, which was utilized during the Pair-LDA topic extracting stage in our method, 

thus the ITRA refinement did not obtain obvious improvements. These observations showed 

that the retrieval improvements of our CCA-PairLDA method over BoVW across these 

retrieval methods were attributed more to the feature extraction than the retrieval methods. In 

addition, the retrieval accuracies with our CCA-PairLDA feature were relatively consistent 

across the various retrieval methods, indicating that our feature extraction method can be 

generally effective for different retrieval approaches.

V. CONCLUSIONS AND FUTURE WORK

We have presented a CCA-PairLDA feature representation method for medical image 

similarity computation. Our method compared the images in a semantic association space 

where the semantic descriptions of the two images can be closely correlated. The method 

has two main components: a PairLDA topic extraction and a CCA-correlation generation. 

Experimental results on two datasets (ELCAP and ADNI) showed that our method achieved 

high retrieval accuracies.

Future work will include applying our method to large scale data analysis, and we will test 

our method on other imaging domains such as the lung tissue classification in high-

resolution computed tomography (HRCT) images [11], the thoracic tumor retrieval in 

positron emission tomography computed tomography (PET-CT) images [60] and the brain 

image classification of AD and normal controls [57]. In addition, we will further investigate 

if a more sophisticated design of low-level local feature will help to provide a better retrieval 

performance with our CCA-PairLDA feature representation, e.g., the deformation-based 

features of voxel- and tenser-based morphometry features of the brain images. We will also 

explore incorporating more domain-specific anatomical information and inter- and intra-

category disease characteristics into our feature model for further improvement, e.g., of the 

binary AD classification.
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Fig. 1. 
Similarity computation between images in different granularity spaces: (a) local feature 

space, where the image is represented as an orderless collection of local features (multiple 

color rectangles), (b) visual word space, where the image is modeled as a word frequency 

histogram (multiple colored circles) derived by assigning local features over the word 

simplex (grey triangle) where each corner corresponds to a word, (c) latent topic space, 

where the image is described by a latent topic distribution (concentric circles) over the topic 

simplex (orange triangle) where each corner is a latent topic, and (d) semantic association 
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space, where the images are associated with the association coefficient (blue arrow) between 

the latent topic distributions. The latent topics are extracted based on the visual words (local 

features) across the images.
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Fig. 2. 
Outline of our CCA-PairLDA feature representation: (a) PairLDA topics are extracted by 

pairing all images from target and source sets, resulting in a topic distribution θl for each 

image Il, (b) association coefficient cst is learnt to capture the semantic association between 

the training image pair (Is, It) with the same category label (indicated with ‘G’), and (c) the 

test images (similarly for training images) are represented as the CCA-PairLDA feature, 

which is the probability of its PairLDA topic distribution given the CCA-correlation model.
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Fig. 3. 
Graphical model of PairLDA generation. α and β are the priors of Dirichlet distributions; θ 
is the N × K matrix indicating the imagetopic distribution; ϕ is the K × W matrix indicating 

the topic-word distribution; z and w are the instances of variables for the topic and word.
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Fig. 4. 
Graphical model of CCA-correlation generation. cst is calculated for each image pair by 

constructing the one-to-one pairing between the images of the same category, with a total of 

Ntrain/2 coefficients learnt given the training size Ntrain.
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Fig. 5. 
Transaxial CT images with typical nodules (from left to right) - well-circumscribed (W), 

vascularized (V), juxta-pleural (J) and pleural-tail (P). The nodules are circled in red.
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Fig. 6. 
Lesion patterns for the three stages, shown from left to right as cognitively normal, MCI and 

AD. Red indicates high metabolism and blue color indicates low metabolism. The images 

were generated using 3D Slicer V4.3.1 [56].
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Fig. 7. 
The retrieval accuracy matrices given different topic numbers and dictionaries sizes of the 

different numbers of outputs, i.e., tk = 1, 5, 10 and 20. K ranges from 5 to 200 with interval 

5, and W is from 10 to 2000 with interval 10 for 10 to 100 and interval 100 for 100 to 2000. 

The accuracies with pure guessing were 0.25 and 0.33 for the ELCAP and ADNI datasets.
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Fig. 8. 
Comparisons of different LTM-based approaches: pLSA (p), LDA (L), PairLDA (PL), CCA-

pLSA (C-p), CCA-LDA (C-L), CCA-PairLDA (C-PL). 9 different statistical values are 

displayed: maximum and minimum (green lines), mean (mauve circle), standard deviation 

(mauve error bar), upper and lower extremes (black error bar), upper and lower quartiles 

(blue rectangle) and median (red line). The upper and lower extremes are the highest and 

lowest values not considered outliers3.
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Fig. 9. 
The retrieval accuracy curves given different retrieval outputs.

3The points are regarded as outliers if they are greater than q3 + ot(q3 − q1) or less than q1 − ot(q3 − q1), where q1 and q3 are the 
lower and upper quartiles. The ot = 1.5 was used in Fig. 8., corresponding to approximately ±2.7σ and 99.3 coverage if the data are 
normally distributed, where σ is the variance.
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Fig. 10. 
Visual retrieval results of the BoVW (upper row) and CCA-PairLDA (lower row) features 

given the K-NN methods on the ELCAP dataset. The top four ranked images are displayed.
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Fig. 11. 
Visual retrieval results of the BoVW (upper row) and CCA-PairLDA (lower row) features 

given the K-NN methods on the ADNI dataset. The top two ranked images are displayed.
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Fig. 12. 
Comparison of different retrieval methods between the BoVW and CCA-PairLDA features.
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